
A DELAUNAY TRIANGULATION APPROACH FOR SEGMENTING CLUMPS OF NUCLEI

Quan Wen1,2, Hang Chang1, and Bahram Parvin1

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2School of Computer Science & Engineering, Univ. of Electronic Sci. & Tech. of China

ABSTRACT

Cell-based fluorescence imaging assays have the potential
to generate massive amount of data, which requires detailed
quantitative analysis. Often, as a result of fixation, labeled
nuclei overlap and create a clump of cells. However, it is im-
portant to quantify phenotypic read out on a cell-by-cell basis.
In this paper, we propose a novel method for decomposing
clumps of nuclei using high-level geometric constraints that
are derived from low-level features of maximum curvature
computed along the contour of each clump. Points of maxi-
mum curvature are used as vertices for Delaunay triangulation
(DT), which provides a set of edge hypotheses for decom-
posing a clump of nuclei. Each hypothesis is subsequently
tested against a constraint satisfaction network for a near opti-
mum decomposition. The proposed method is compared with
other traditional techniques such as the watershed method
with/without markers. The experimental results show that
our approach can overcome the deficiencies of the traditional
methods and is very effective in separating severely touching
nuclei.

Index Terms— nuclear segmentation, Delaunay triangu-
lation, geometric grouping.

1. INTRODUCTION

Responses of tissues and cell-based assays are often hetero-
geneous, which require a large collection of samples to be
imaged. The main advantage of the cell-based assays is in a
large number of readouts, where every individual cell can be
considered as a single sensor responding to the environmental
perturbation. Therefore, it is necessary to delineate each cell
from its surrounding populations. However, there are a signif-
icant number of technical and biological variations. Technical
variations can be as a results of sample preparation, fixation,
seeding density, and staining. On the other hand, biologi-
cal variations often originate from different cell types, cells
being in a different states, spatial organization of the cells,
and the fact that cells respond differently to perturbations and
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their microenvironment. These coupled variations can lead to
an overlap of cellular compartments, thus requiring advanced
segmentation methods. In this paper, we focus on the segmen-
tation of fixed cells, stained for their nuclear compartments,
which sometimes form a clump as a result of seeding density
or morphological properties.

Our model-based method, assumes that each nucleus is
almost convex, and infers convex regions by grouping points
of maximum curvature along the contour of clump. The main
thesis is that points of maximum curvature provide islands
of saliency that help partition a clump of nuclei. This for-
mulation has the potential to be computationally expensive;
however, since only neighboring points of curvature can be
grouped to form a hypothesis, the search space can be signif-
icantly reduced. Furthermore, by using Delaunay triangula-
tion, the search space can be methodically constructed in the
absence of any heuristic by automatically inferring neighbor-
hood configuration while reducing the number of free param-
eters. The spatial organization of the Delaunay triangulation
enables the additional application of geometric constraints for
inference of convex regions.

The rest of the paper is organized as follows. A literature
review is presented in Section 2. The details of our approach
are introduced in Section 3, and the experiment and compari-
son results are discussed in Section 4. Conclusions and future
work are given in Section 5.

2. PREVIOUS METHODS

Current techniques in segmentation of clumped nuclei can
be partitioned into model-free and model-based methods.
An example of the model-free approach is the watershed
method coupled with distance transform [1]. On the other
hand, model-based methods can be parametric (e.g., Hough
transform) or nonparametric. A few examples of model-
based nonparametric methods are reviewed below. In [2],
the segmentation problem was initially constrained by infer-
ring seeds corresponding to nuclear regions through iterative
radial voting [3]. These seeds corresponded to an approx-
imate location of the center of mass for each nucleus, thus
partitioning the regions between the seeds through Voronoi
tessellation for further refinement. In [4], the segmentation
problem was expressed by detecting convex regions that are



partitioned from points of maximum curvature along the fore-
ground. Our proposed method is an extension of the method
proposed by Raman [4], where grouping of the points of
maximum curvature is derived from higher-level Delaunay
triangulation. As a result, (i) an exponential computational
complexity is reduced to an almost linear complexity; (ii) the
number of free parameters is drastically reduced; and (iii) a
more complex clump can now be decomposed, which was
almost impossible do during our previous implementation.

An important step of the segmentation process is to iden-
tify points of maximum curvature along the boundary of the
clump. Previous methods have also suggested convex hull
[5] and polygon fit as precursors for detecting points of max-
imum bend. We suggest that by computing curvature along
the contour more robust and accurate results can be archived.

3. APPROACH
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Fig. 1. Flow chart of our approach.

Our approach consists of several steps as illustrated in
Fig. 1. First, the original image is segmented into fore-
ground and background by an iterative threshold selection
method. Then points of maximum curvature are computed
along the object contour, followed by the Delaunay triangula-
tion of these points. Finally, geometric constraints are applied
through edge inference to get the final segmentation results.
The details of major steps are presented in the following
subsections.

3.1. Detection of Points of Maximum Curvature
The curvature is computed by using k = x′y′′

−y′x′′

(x′2+y′2)3/2
, where

x and y are coordinates of the boundary points. The deriva-
tives are computed by convoluting the boundary with Gaus-
sian derivatives. An example of detected points of maximum
curvature whose k values are larger than threshold λk are
shown in Fig. 2(a) and Fig. 2(b).

We denote the ith point of local maximum curvature as vi,
and the set of point of maximum curvature of one connected
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Fig. 2. Curvature profile on the boundary. The detected
points of positive maximum curvature are marked with red
plus signs. Points of the outer and inner boundaries are in the
range [1, 1986] and above 1986, respectively.

���

���

� � �

� ���

� �

� �

Fig. 3. Geometric attributes of points of maximum curvature
of every hypothesis edge.

component as V = ∪M
i=1vi, where M is the total number of

point of maximum curvature of this connected component.

3.2. Delaunay Triangulation of Points of Maximum Cur-
vature
3.2.1. Size of Hypothesis Space

It should be clear that the size of hypothesis space for po-
tential edge configuration is very large. In this section, we
examine the size of this space in order to justify triangulation
and exploiting inherent locality.

As shown in Fig. 3, let eij be the edge connecting two
points vi and vj . We then characterize it by (Ti, Tj , βij , βji),
in which (i) Ti and Tj are unit vectors representing the con-
tour tangent directions at vi and vj , and (ii) βij and βji are
the angles formed by Ti, Tj and eij .

Furthermore, the set of all edges are then denoted as E =
∪eij for i, j ∈ {1, · · · , M}, and i 6= j. Let θ ∈ E be a
decomposition of the configuration space Ω. The number of
possible decomposition in this space is |Ω| = 2M . Our aim
is to recover a decomposition of θ∗ that best fits a set of geo-
metric constraints. For an inferred edge eij and its attributes,
these constraints are: (i) that it must be inside the clump; (ii)
that the angle between Ti and Tj should be maximized (e.g.,
they should be antiparallel); (iii) that βij , βji should be as
close as possible to π/2; and (iv) that it must not intersect
other edges.

If more than one θ pass the geometric constraint test, then
the hypothesis with the best metric for convexity is accepted,



(a) Delaunay triangulation (b) No background edges

(c) Edge pruning (d) Edge inference

Fig. 4. Edge refinement through the constraint satisfaction
network.

where convexity is defined as C = −N +
∑

N
i=1φi/π. Here,

φi is the sum of the tangent angles formed along the contour
of the ith partition, and N is the total number of decomposed
partitions of the clump.

3.2.2. Delaunay Triangulation for Hypotheses Generation

The DT approach is applied to hypothesize potential edges.
Its following properties are suitable for our purpose: (i) edges
in DT do not intersect with each other, and (ii) the Euclidean
minimum spanning tree (EMST) is a subgraph of DT. As can
be seen in Fig. 4(a), DT (V ), the DT of point set V , is able
to provide meaningful edge information with less redundancy
than Ω for further processing. Furthermore, the number of
edges is reduced from M(M + 1)/2 to less than 3(M − 2)
with a computation complexity of O(M log M).

3.3. Enforcement of Geometric Constraints

3.3.1. Edge Set Pruning Using Geometric Constraints

DT edges provide a natural way of perceptually grouping the
points of maximum curvature to cut the clump without con-
sidering geometrical properties at each point. Nonetheless, its
size can still incur high computational costs to find θ∗. There-
fore, based on the attributes of each edge, DT (V ) can be
further reduced by using the following three additional edge
pruning rules: (i) deleting edge crossing the background; (ii)
deleting edge eij if (T T

i ·Tj) > λT ; and (iii) deleting edge
eij if max(|T T

i · eij/|eij ||, |T
T
j · eji/|eji||) > λβ . Here, λT

and λβ are thresholds. Pruning rules (ii) and (iii) are corre-
sponding to geometric constraints (ii) and (iii) mentioned in
Section 3.2.1, respectively. The results from applying the first

pruning rule and additional results from the other two rules
are shown in Fig. 4(b) and Fig. 4(c), respectively.

3.3.2. Edge Set Selection by Inference

After edge pruning has been applied, the resulting edge set
becomes sparse and ready for the application of simple infer-
ence rules to get θ∗. Denoting the input and output edge sets
as Ein and Eout, with point set Vin and Vout, respectively,
and deg(vi) as the degree of point vi in the edge set, the algo-
rithm for edge inference is summarized as follows:

1. Let Ein be the edge set after edge pruning, and Eout←
∅.

2. While Ein 6= ∅

(a) In Vin, if deg(vi) = 1, then Ein ← Ein \ eij and
Eout ← Eout ∪ eij .

(b) In Eout, if eij ∈ Eout, then Ein ← Ein\ei∗\ej∗,
where ∗ stands for vertices.

(c) If eij ∈ Ein, ejk ∈ Ein, and eki ∈ Ein, with
deg(vi) = 2, deg(vj) = 2, and deg(vk) = 2,
then Ein ← Ein \ eij \ ejk \ eki, and Eout ←
Eout ∪ eij ∪ ejk ∪ eki.

3. For vi ∈ V with no ei∗ ∈ Eout. Use its tangent normal
direction to generate an edge into Eout.

4. For eij ∈ Eout, ejk ∈ Eout, and eki ∈ Eout, with
deg(vi) = 2, deg(vj) = 2, and deg(vk) = 2, choose
the two edges which produce the minimum convexity
after decomposition, and delete the remaining one from
Eout.

In the case where |V | = 1, Ein is set to be ∅. For the case
where |V | = 2, we set Ein = {e12} if e12 passes the edge
pruning test, or Ein = ∅ if not. As shown in Fig. 4(d), the
connected component is correctly decomposed into convex
regions by the final edge set θ∗ = Eout.

4. EXPERIMENTAL RESULTS

We have (i) examined the behavior of the method with syn-
thetic data; (ii) validated the technique with real data; and
(iii) compared the performance of the method with a leading
method in the literature. The empirical parameter settings are
λβ = 0.9, λT = −0.15, and λk = 0.1. With respect to
comparison with the previous literature, we have opted to test
the watershed method with distance transform [1], since it is
widely used by the microscopy community.

In the synthetic test, objects were generated randomly,
and noise was added, as shown in Fig. 5(a). This ex-
periment shows that the marker-guided watershed reduces
oversegmentation as compared with the original watershed
method. Nonetheless, the result lacks smoothness along in-
ferred edges, and there is an inherent loss of accuracy. In
contrast, our proposed method partitions the clump along the
expected locations (e.g., points of maximum curvature) while
eliminating oversegmentation.
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Fig. 5. Results of synthetic data. (a) is the synthetic image.
(b), (c), and (d) are results of watershed, marker-guided wa-
tershed, and our method, respectively.

In the case of real data, a set of 10 DAPI-stained images
were acquired. Each image has roughly 100 cells. Again,
the marker-based watershed was superior to the traditional ap-
proach in the case of oversegmentation; however, it still could
not decompose some of the touching nuclei. In contrast, our
method consistently performed better than the marker-based
approach. Comparative results for three different images are
shown in Fig. 6.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new approach for segmenting
clumps of nuclei by using the points of maximum curvature
as a basis for Delaunay triangulation. Triangulation provides
a set of hypotheses for boundary completion through a con-
straint satisfaction network. We have defined a set of geo-
metric constraints that facilitates hypothesis verification. Ad-
ditionally, the proposed method was compared with marker-
based watershed segmentation to demonstrate an improved
performance profile. Our continued research focuses on in-
corporating (i) learning and (ii) automatic selection of param-
eters for clump decomposition. Learning enables additional
filtering of false positive segmentation, and automatic param-
eter selection removes ambiguities associated with parameter
selection (e.g., threshold for curvature maxima). A potential
methodology will be to place the segmentation step in a feed-
back loop for improved performance and usability.
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